LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Predictive Analysis Using Chemical-Gene Interaction Networks Consistent with Observed Endocrine Activity and Mutagenicity of U.S. Streams.

Photo from wikipedia

In a recent U.S. Geological Survey/U.S. Environmental Protection Agency study assessing >700 organic compounds in 38 streams, in vitro assays indicated generally low estrogen, androgen, and glucocorticoid receptor activities, with… Click to show full abstract

In a recent U.S. Geological Survey/U.S. Environmental Protection Agency study assessing >700 organic compounds in 38 streams, in vitro assays indicated generally low estrogen, androgen, and glucocorticoid receptor activities, with 13 surface waters with 17β estradiol equivalent (E2Eq) activities greater than a 1 ng/L estimated effects-based trigger value for estrogenic effects in male fish. Among the 36 samples assayed for mutagenicity in the Salmonella bioassay (reported here), 25% had low mutagenic activity; 75% were not mutagenic. Endocrine and mutagenic activities of the water samples were well correlated with each other and with the total number and cumulative concentrations of detected chemical contaminants. To test the predictive utility of knowledgebase-leveraging approaches, site-specific predicted chemical-gene (pCGA) and predicted analogous pathway-linked (pPLA) association networks identified in the Comparative Toxicogenomics Database were compared with observed endocrine/mutagenic bioactivities. We evaluated pCGA/pPLA patterns among sites by cluster analysis and principal component analysis and grouped the pPLA into broad mode-of-action classes. Measured E2Eq and mutagenic activities correlated well with predicted pathways. The pPLA analysis also revealed correlations with signaling, metabolic, and regulatory groups, suggesting that other effects pathways may be associated with chemical contaminants in these waters and indicating the need for broader bioassay coverage to assess potential adverse impacts.

Keywords: observed endocrine; analysis; chemical gene; mutagenicity; endocrine; activity

Journal Title: Environmental science & technology
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.