LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Linking Isotope Exchange with Fe(II)-Catalyzed Dissolution of Iron(hydr)oxides in the Presence of the Bacterial Siderophore Desferrioxamine-B

Dissolution of Fe(III) phases is a key process in making iron available to biota and in the mobilization of associated trace elements. Recently, we have demonstrated that submicromolar concentrations of… Click to show full abstract

Dissolution of Fe(III) phases is a key process in making iron available to biota and in the mobilization of associated trace elements. Recently, we have demonstrated that submicromolar concentrations of Fe(II) significantly accelerate rates of ligand-controlled dissolution of Fe(III) (hydr)oxides at circumneutral pH. Here, we extend this work by studying isotope exchange and dissolution with lepidocrocite (Lp) and goethite (Gt) in the presence of 20 or 50 μM desferrioxamine-B (DFOB). Experiments with Lp at pH 7.0 were conducted in carbonate-buffered suspensions to mimic environmental conditions. We applied a simple empirical model to determine dissolution rates and a more complex kinetic model that accounts for the observed isotope exchange and catalytic effect of Fe(II). The fate of added tracer 57Fe(II) was strongly dependent on the order of addition of 57Fe(II) and ligand. When DFOB was added first, tracer 57Fe remained in solution. When 57Fe(II) was added first, isotope exchange between surface and solution could be observed at pH 6.0 but not at pH 7.0 and 8.5 where 57Fe(II) was almost completely adsorbed. During dissolution of Lp with DFOB, ratios of released 56Fe and 57Fe were largely independent of DFOB concentrations. In the absence of DFOB, addition of phenanthroline 30 min after tracer 57Fe desorbed predominantly 56Fe(II), indicating that electron transfer from adsorbed 57Fe to 56Fe of the Lp surface occurs on a time scale of minutes to hours. In contrast, comparable experiments with Gt desorbed predominantly 57Fe(II), suggesting a longer time scale for electron transfer on the Gt surface. Our results show that addition of 1–5 μM Fe(II) leads to dynamic charge transfer between dissolved and adsorbed species and to isotope exchange at the surface, with the dissolution of Lp by ligands accelerated by up to 60-fold.

Keywords: dfob; hydr oxides; isotope exchange; iron; dissolution

Journal Title: Environmental Science & Technology
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.