LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Degradation of Perfluoroalkyl Ether Carboxylic Acids with Hydrated Electrons: Structure-Reactivity Relationships and Environmental Implications.

Photo from wikipedia

This study explores structure-reactivity relationships for the degradation of emerging perfluoroalkyl ether carboxylic acid (PFECA) pollutants with ultraviolet-generated hydrated electrons (eaq-). The rate and extent of PFECA degradation depend on… Click to show full abstract

This study explores structure-reactivity relationships for the degradation of emerging perfluoroalkyl ether carboxylic acid (PFECA) pollutants with ultraviolet-generated hydrated electrons (eaq-). The rate and extent of PFECA degradation depend on both the branching extent and the chain length of oxygen-segregated fluoroalkyl moieties. Kinetic measurements, theoretical calculations, and transformation product analyses provide a comprehensive understanding of the PFECA degradation mechanisms and pathways. In comparison to traditional full-carbon-chain perfluorocarboxylic acids, the distinct degradation behavior of PFECAs is attributed to their ether structures. The ether oxygen atoms increase the bond dissociation energy of the C-F bonds on the adjacent -CF2- moieties. This impact reduces the formation of H/F-exchanged polyfluorinated products that are recalcitrant to reductive defluorination. Instead, the cleavage of ether C-O bonds generates unstable perfluoroalcohols and thus promotes deep defluorination of short fluoroalkyl moieties. In comparison to linear PFECAs, branched PFECAs have a higher tendency of H/F exchange on the tertiary carbon and thus lower percentages of defluorination. These findings provide mechanistic insights for an improved design and efficient degradation of fluorochemicals.

Keywords: degradation; hydrated electrons; reactivity relationships; structure reactivity; ether carboxylic; perfluoroalkyl ether

Journal Title: Environmental science & technology
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.