LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Surface reactions in selective modification: the prerequisite for plastic flotation.

Photo from wikipedia

Improper disposal of waste plastic has caused much environmental pollution, but plastic recycling can reduce the amount of new and residual waste plastic in the environment through source control. Plastic… Click to show full abstract

Improper disposal of waste plastic has caused much environmental pollution, but plastic recycling can reduce the amount of new and residual waste plastic in the environment through source control. Plastic flotation can separate waste plastics with similar physical and chemical properties, which suggests its promising application in plastic recycling. With the help of the different hydrophilicities waste plastic can be separated by flotation, and hydrophilization can be accomplished by surface modifications. However, no systematic studies addressing these surface reactions have been published yet, and such modifications are a prerequisite for plastic flotation. In this critical review, we not only summarize the various modification mechanisms, including physical regulation, surface oxidation, surface degradation, dechlorination, and coating, but also have reasonably added additional information for some reactions covering surface reconstruction, plastic degradation, polymer stability, wastewater treatment, soil remediation, and chemical recycling of plastic. An entirely novel concept, the "plastic gene", is also proposed to elaborate on some contradictory results. Plastic flotation with clear surface reactions may promote plastic recycling and thereby control waste plastic at the source, save energy, and reduce microplastics. We also predict challenges for clean, efficient, and practical surface modifications and plastic flotation.

Keywords: surface reactions; surface; waste plastic; flotation; plastic flotation

Journal Title: Environmental science & technology
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.