LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Revisiting the Effect of U-Bends, Flow Parameters, and Feasibility for Scale-Up on Residence Time Distribution Curves for a Continuous Bioprocessing Oscillatory Baffled Flow Reactor

Photo by _louisreed from unsplash

An oscillatory baffled flow reactor (OBR) has been designed with 60 interbaffled cells. The baffled columns of 40 mm internal diameter together result in a reactor length of 5740 mm.… Click to show full abstract

An oscillatory baffled flow reactor (OBR) has been designed with 60 interbaffled cells. The baffled columns of 40 mm internal diameter together result in a reactor length of 5740 mm. The oscillatory amplitude and frequency were in the range of 2–12 mm and 0.3–2 Hz, respectively. The report investigates the impact of U-bends and the number of reactor sections on axial dispersion for scale-up feasibility. A prediction model using operating parameters has been developed to maximize plug flow conditions using the tanks-in-series (TiS) model. The maximum TiS value was 13.38 in a single column compared to 43.68 in the full reactor at a velocity ratio of 2.27 using oscillatory parameters 8 mm and 0.3 Hz. The mixing efficiency along the reactor was found to decrease after each column at amplitudes <6 mm compared to amplitudes up to 12 mm, where a negligible impact was observed. U-bend geometry had a significant role in the decrease of TiS values.

Keywords: revisiting effect; reactor; oscillatory baffled; flow reactor; oscillatory; baffled flow

Journal Title: Industrial & Engineering Chemistry Research
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.