LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Mechanical Properties of Microcellular and Nanocellular Thermoplastic Polyurethane Nanocomposite Foams Created Using Supercritical Carbon Dioxide

In this study, the mechanical properties of submicrocellular or nanocellular thermoplastic polyurethane (TPU) nanocomposite foams were investigated via batch foaming using CO2 as the blowing agent. Cloisite 30B nanoclay (clay… Click to show full abstract

In this study, the mechanical properties of submicrocellular or nanocellular thermoplastic polyurethane (TPU) nanocomposite foams were investigated via batch foaming using CO2 as the blowing agent. Cloisite 30B nanoclay (clay 30B) was the nucleation agent. Adding clay 30B and foaming at 60 °C resulted in a nanocellular foam. A cell size of 450 nm and a cell density of 1011 cells/cm3 were obtained. The relative density of the foam was within the range 0.9–0.95. The modulus of the foamed samples was found to be proportional to their relative density regardless of their structure (microcellular/submicrocellular). The results indicated that the modulus of the foamed samples with a cell size larger than 400 nm decreased with foam density. However, to our surprise, although adding only 1 wt % of nanoclay reduced the foam density, an increase in the modulus was observed. In addition, the cells became small and uniform.

Keywords: density; mechanical properties; nanocomposite foams; thermoplastic polyurethane; nanocellular thermoplastic

Journal Title: Industrial & Engineering Chemistry Research
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.