LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Can Fibrous Mats Outperform Current Ultrafiltration and Microfiltration Membranes

Photo by hdbernd from unsplash

Ultrafiltration (UF) and microfiltration (MF) membranes have important applications in separations related to proteins, pharmaceutical products, viruses, food and beverages, water treatment, and sterilization. Although phase inversion membranes have been… Click to show full abstract

Ultrafiltration (UF) and microfiltration (MF) membranes have important applications in separations related to proteins, pharmaceutical products, viruses, food and beverages, water treatment, and sterilization. Although phase inversion membranes have been used for MF and UF applications for decades, there has been, instead, an increase in interest in using electrospun fibrous mats as MF/UF membranes. Although the selectivity–permeability tradeoff for conventional phase-inversion UF membranes is now established, such an understanding for phase-inversion MF membranes and for fibrous mat membranes does not exist. Here, we report the first preliminary selectivity–permeability tradeoff for commercially available MF membranes. We also describe a theoretical framework that can be used to evaluate the performance of fibrous mats. Mats consisting of a random array of nanofibers were modeled with a gamma pore size distribution, based on previous work. The pore size distribution of the mat was related to the physical...

Keywords: microfiltration membranes; ultrafiltration microfiltration; fibrous mats; phase inversion

Journal Title: Industrial & Engineering Chemistry Research
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.