LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A Novel Lignin/ZnO Hybrid Nanocomposite with Excellent UV-Absorption Ability and Its Application in Transparent Polyurethane Coating

Photo by andreacaramello from unsplash

In this work, lignin/zinc oxide nanocomposites with excellent UV-absorbent performance were prepared through a novel hydrothermal method using industrial alkali lignin (AL) as raw materials. AL was first modified by… Click to show full abstract

In this work, lignin/zinc oxide nanocomposites with excellent UV-absorbent performance were prepared through a novel hydrothermal method using industrial alkali lignin (AL) as raw materials. AL was first modified by quaternization to synthesize quaternized alkali lignin (QAL). The QAL/ZnO nanocomposites with different lignin contents were then prepared via a facile one-step hydrothermal method using QAL and zinc nitrate hexahydrate and hexamethylenetetramine in aqueous solution. The prepared nanocomposite possessed an average diameter of ∼100 nm and showed excellent synergistic UV-absorbent performance. The particle morphology and hybrid structure were carefully characterized by SEM, TEM, XRD, FT-IR, XPS, UV–vis, and TG analyses. Interestingly, it was found that the UV transmittance of polyurethane (PU) film was significantly reduced and the mechanical properties of the PU were significantly enhanced when blended with the prepared QAL/ZnO nanocomposite. The results of this work were of practical importanc...

Keywords: novel lignin; lignin; polyurethane; zno; zno hybrid; lignin zno

Journal Title: Industrial & Engineering Chemistry Research
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.