LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

The Influence of Ionic Strength on the Electroassisted Filtration of Microcrystalline Cellulose

Photo by voiceandvideo from unsplash

The production of materials such as microfibrillated cellulose and cellulose nanocrystals is gathering significant research interest by combining mechanical strength and toughness with a low density, biodegradability and renewability. However,… Click to show full abstract

The production of materials such as microfibrillated cellulose and cellulose nanocrystals is gathering significant research interest by combining mechanical strength and toughness with a low density, biodegradability and renewability. However, one of the challenges with production on an industrial scale is to obtain an energy-efficient solid–liquid separation which is difficult because of the high specific filtration resistance of these materials. This study investigates electroassisted filtration as a method to facilitate the dewatering of cellulosic materials and the influence of ionic strength on the electrofiltration behavior. Electroassisted filtration is found to improve the dewatering rate of the studied cellulosic material, and the potential improvement compared to pressure filtration increased with the specific surface area of the solid material. Increasing the ionic strength of the system increased the power demand of the electroassisted filtration, and the major potential for industrial applica...

Keywords: filtration; electroassisted filtration; influence ionic; ionic strength

Journal Title: Industrial & Engineering Chemistry Research
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.