LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Rare Earth/Transition Metal Oxides for Syngas Tar Reforming: A Model Compound Study

Photo by thinkmagically from unsplash

A major problem in biomass or coal gasification is removal of syngas byproducts such as H2S, NH3, and tars (heavy hydrocarbons) that cause catalyst deactivation and clogging problems downstream. Rare… Click to show full abstract

A major problem in biomass or coal gasification is removal of syngas byproducts such as H2S, NH3, and tars (heavy hydrocarbons) that cause catalyst deactivation and clogging problems downstream. Rare earth oxides (REOs) doped with transition metals (TMs) are promising catalysts for tar reforming. With propane as a model compound, we compared such catalysts to a typical supported Ni catalyst, and also to recent density functional theory (DFT) results modeling these systems. The REO/TM catalysts are active over the range 920–1000 K, with no significant deactivation in non-sulfur containing feeds. In particular, a Mn/CeO2 catalyst showed good reforming activity with low carbon, CO2, and CH4 yields. This catalyst also maintained some activity in the presence of 40 ppm H2S. Kinetics calculations showed that most such catalysts have near zero order kinetics with respect to water, making them usable with a variety of gasifier effluents. Characterization of used catalysts by multiple techniques suggests that the ...

Keywords: model compound; tar reforming; rare earth; syngas; catalyst

Journal Title: Industrial & Engineering Chemistry Research
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.