LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Rational Optimization of Reaction Conditions for the One-Pot Transformation of Furfural to γ-Valerolactone over Zr–Al-Beta Zeolite: Toward the Efficient Utilization of Biomass

Photo from wikipedia

The optimization of the production of γ-valerolactone (GVL) from furfural (FAL) through a cascade of transformations involving hydrogen transfer and different acid-driven reactions has been tackled by using a bifunctional… Click to show full abstract

The optimization of the production of γ-valerolactone (GVL) from furfural (FAL) through a cascade of transformations involving hydrogen transfer and different acid-driven reactions has been tackled by using a bifunctional Zr–Al-beta zeolite as catalyst. The study involved the simultaneous evaluation of the influence of the main reaction parameters affecting the performance of the selected catalyst, including temperature, catalyst loading, furfural concentration, and reaction time. An experimental design methodology was applied, aiming to maximize the performance of the catalyst in terms of GVL selectivity and efficient use of the biomass resource (minimizing the undesired products), herein denoted as “selective productivity”. The effects of the studied reaction parameters on each response factor have been obtained and discussed. The ratio furfural/catalyst appears as the key parameter governing the performance of the catalyst system. Under the optimized reaction conditions, the maximum value achieved for ...

Keywords: beta zeolite; reaction conditions; optimization; reaction; catalyst; valerolactone

Journal Title: Industrial & Engineering Chemistry Research
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.