Volatile organic air pollutants such as aldehyde compounds have been identified as progressively damaging chemicals impacting human health at small albeit dangerous quantities. This study focuses on evaluating the dynamic… Click to show full abstract
Volatile organic air pollutants such as aldehyde compounds have been identified as progressively damaging chemicals impacting human health at small albeit dangerous quantities. This study focuses on evaluating the dynamic adsorption of formaldehyde over binary mixed-metal oxides (MMOs) such as ZrO2/SiO2 and TiO2/SiO2 with different metal ratios. In addition, a metal–organic framework (MOF), namely, MIL-101(Cr), was synthesized and used as a base adsorbent to which the performance of MMOs was compared. The formaldehyde dynamic adsorption capacity of the materials was determined through breakthrough experiments. Our results indicated that zirconia-based materials exhibit a comparatively higher affinity toward formaldehyde than their titania-based counterparts at very dilute concentrations. In particular, ZrO2/SiO2 with weight ratio of 25/75 exhibited a dynamic adsorption capacity of 2.9 mmol/g at room temperature using a formaldehyde concentration of 170 ppmv, which was comparable to that of MIL-101(Cr). Ch...
               
Click one of the above tabs to view related content.