LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Optimal Solvent Design for Extractive Distillation Processes: A Multiobjective Optimization-Based Hierarchical Framework

Photo by chrisabney from unsplash

Extractive distillation is a widely accepted and commercialized process for separating azeotropic mixtures compared to conventional distillation. The search for high-performing solvents, or entrainers, needed in extractive distillation is a… Click to show full abstract

Extractive distillation is a widely accepted and commercialized process for separating azeotropic mixtures compared to conventional distillation. The search for high-performing solvents, or entrainers, needed in extractive distillation is a challenging task. The heuristic guideline or experiment-based method for the screening of entrainers is usually not very efficient and limited to the existing, well-known solvents. In this contribution, we propose a multistage theoretical framework to design solvents for extractive distillation. A multiobjective optimization-based computer-aided molecular design (MOO-CAMD) method is developed and used to find a list of Pareto-optimal solvents. In the MOO-CAMD method, two important solvent properties (i.e., selectivity and capacity) that determine the extractive distillation efficiency are simultaneously optimized. The next step involves a further screening of the Pareto-optimal solvents by performing rigorous thermodynamic calculation and analysis. Finally, for each of...

Keywords: extractive distillation; optimization based; framework; distillation; design; multiobjective optimization

Journal Title: Industrial & Engineering Chemistry Research
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.