LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

110th Anniversary: Fischer–Tropsch Synthesis for Multiphase Product Recovery through Reactive Distillation

Photo from wikipedia

The Fischer–Tropsch (FT) reaction is an important bridge between inorganic synthesis gas and transportation fuels such as diesel and gasoline. It is receiving even more attention today as a technology… Click to show full abstract

The Fischer–Tropsch (FT) reaction is an important bridge between inorganic synthesis gas and transportation fuels such as diesel and gasoline. It is receiving even more attention today as a technology to produce transportation fuels from shale/natural gas, coal, biomass, and also from stranded gas produced from remote oil fields. Reactive distillation (RD) is a proven reactive separation method that can save downstream separation costs by performing separation and reaction simultaneously. In addition, it can enhance yield by constantly removing byproducts and thus create favorable zones for equilibrium restricted reactions. It can also enhance conversion by increasing reactant concentration through enhanced gas phase feed solubility in the liquid phase. In this work, we build a rigorous mathematical model to simulate and optimize an FT RD column, with enhanced formulation to handle disappearing phases and optimal tray counts, feed points, and product draws. The design is optimized with an economic objecti...

Keywords: gas; reactive distillation; synthesis; fischer tropsch; product

Journal Title: Industrial & Engineering Chemistry Research
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.