LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Improvement of Thermal Conductivities for Epoxy Composites via Incorporating Poly(vinyl benzal)-Coated h-BN Fillers and Solvent-Assisted Dispersion

Photo by rabinam from unsplash

A solvent-assisted diffusion method is developed here to prepare thermally conductive epoxy composites (EP) after hexagonal boron nitride (h-BN) was modified via poly (vinyl benzal) (PVB) noncovalent bond coating. The… Click to show full abstract

A solvent-assisted diffusion method is developed here to prepare thermally conductive epoxy composites (EP) after hexagonal boron nitride (h-BN) was modified via poly (vinyl benzal) (PVB) noncovalent bond coating. The h-BN@PVB with different PVB coating contents was prepared and verified by FT-IR, SEM, and TGA. Then, EPs loaded with 20 wt % filler were prepared by using these different PVB-coated particles to find the optimum value for PVB content. Finally, when introduced dimethyl sulfoxide solvent to the dissolve PVB shell after the dispersion of h-BN@PVB into epoxy resin, the thermal conductivities were similar to that of h-BN/EP at low filler levels, but larger at high filler loading because of the formation of flower-like thermal conduction paths. The thermal conductivity can reach 0.89 W m–1·K–1 at 40 wt % h-BN@PVB loading by using the solvent-assisted diffusion method, which is 4 times higher than that of native epoxy resin.

Keywords: solvent assisted; pvb; thermal conductivities; vinyl benzal; epoxy composites; poly vinyl

Journal Title: Industrial & Engineering Chemistry Research
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.