LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Exploring Magnetic XY Behavior in a Quasi-2D Anisotropic Triangular Lattice of Cu(II) by Functionalized Graphene.

Photo from wikipedia

Study on magnetism in two-dimensional (2D) spin-lattices is advancing rapidly. In this work, phase-pure botallackite (Bo) (Cu2(OH)3Br), a quasi-2D S = 1/2 anisotropic triangular spin-lattice is stabilized over 2D reduced… Click to show full abstract

Study on magnetism in two-dimensional (2D) spin-lattices is advancing rapidly. In this work, phase-pure botallackite (Bo) (Cu2(OH)3Br), a quasi-2D S = 1/2 anisotropic triangular spin-lattice is stabilized over 2D reduced graphene oxide (rGO) nanosheets via simple oxidation-reduction reaction chemistry. In comparison to polycrystalline Bo, such an anchoring resulted in the oriented growth of Bo crystallites in the Bo-rGO system. The Bo-rGO nanocomposite was found to be magnetically active with a Néel transition at ∼8.9 K, crossing over to possible XY anisotropy at ∼5 K-as revealed by complementary dc and ac susceptibility measurements-an unprecedented observation in the field assigned to an interfacial effect. This work demonstrates the potential usage of nonmagnetic 2D functionalized graphene to significantly modulate the magnetic properties of 2D spin-lattices.

Keywords: anisotropic triangular; functionalized graphene; chemistry; quasi anisotropic; lattice

Journal Title: Inorganic chemistry
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.