LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Formation of Heteropolynuclear Lanthanide Complexes Using Macrocyclic Phosphonated Cyclam-Based Ligands.

Photo by richardrschunemann from unsplash

Ligands L1 and L2, respectively based on a cyclam and a cross-bridged cyclam scaffold functionalized at N1 and N8 by 6-phosphonic-2-methylene pyridyl groups, are described. While complexation of lanthanide (Ln)… Click to show full abstract

Ligands L1 and L2, respectively based on a cyclam and a cross-bridged cyclam scaffold functionalized at N1 and N8 by 6-phosphonic-2-methylene pyridyl groups, are described. While complexation of lanthanide (Ln) cations with L2 was not possible, a family of complexes has been prepared with L1, of the general formulae [LnL1H2]Cl (Ln3+ = Lu, Tb, Yb) or [LnL1H] (Ln3+ = Eu). The solution, structural, potentiometric, and photophysical data for these novel ligands and their complexes have been investigated, including a solid-state study by X-ray diffraction (L1, L2, and [EuL1H]), 1H NMR complexation investigations (Lu3+), as well as UV-vis absorption and luminescence spectroscopy in water and D2O (pH ≈ 7). L1 forms 1:1 metal-ligand stoichiometric octadentate complexes in solution. Importantly, the pyridyl phosphonate functions are capable of simultaneous chelation to the metal center and of interaction with a second metal center. 1H NMR (Lu3+) and spectrophotometric titrations of the isolated [TbL1]- complex by EuCl3 salts demonstrated the formation of high-order (hetero)polymetallic species in aqueous solution (H2O, pH = 7). Global analysis of the luminescence titration experiment points to the formation of 4:1, 3:1, and 3:2 [TbL1]/Eu heteropolynuclear assemblies, exhibiting a strong preference to forming [TbL1]3Eu2 at increased europium concentrations, with energy transfer occurring between the kinetically inert terbium complex and added europium cations.

Keywords: cyclam; lanthanide complexes; formation; formation heteropolynuclear; heteropolynuclear lanthanide

Journal Title: Inorganic chemistry
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.