LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Anomalous Melting Point of Multicharge Ionic Liquids: Structural, Electrostatic, and Orbital Properties of [Ln(NO3)6]3- (Ln = Ce, Pr) Anions.

Photo from wikipedia

Salts composed of multicharged cations/anions usually exhibit a large lattice energy and strong Coulomb force, which results in high melting points. However, an increasing number of highly charged ionic liquids… Click to show full abstract

Salts composed of multicharged cations/anions usually exhibit a large lattice energy and strong Coulomb force, which results in high melting points. However, an increasing number of highly charged ionic liquids exceed expectations based on conventional experience; even their melting points are much lower than those found for simple ionic liquids composed of monovalent ions. To further study this phenomenon, we studied a group of stable ionic liquids containing tricharged [Ce(NO3)6]3- and [Pr(NO3)6]3- anions. The structures for [C6mim]3[Ce(NO3)6] and [C6mim]3[Pr(NO3)6] were determined by single-crystal X-ray diffraction with triclinic and P1̅ space groups. The electrostatic potential density per unit ion surface and volume was proposed and calculated. Additionally, theoretical analysis based on Hirshfeld surface and charge decomposition was carried out to explore the intermolecular interaction and electronic structure of the lanthanide anions. The electrostatic and orbital properties were found to be more useful for understanding the melting points of highly charged salts compared with the sole use of lattice energy. The electrostatic potential density per unit ion surface and volume showed a linear relationship with the melting point of ionic liquids composed of monovalent to trivalent ions. These structure-melting point relationships will be beneficial for expounding new low-melting-point ionic liquids with a wide liquidus range.

Keywords: orbital properties; melting point; electrostatic orbital; no3 anions; ionic liquids

Journal Title: Inorganic chemistry
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.