LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Zwitterionic Mixed-Valence Species for the Design of Neutral Clocked Molecular Quantum-Dot Cellular Automata.

Photo from wikipedia

Mixed-valence compounds can be used for the design of molecular quantum-dot cellular automata (QCA). Here, we investigate the QCA properties of a three-dot "Y"-shaped functionalized zwitterionic neutral closo-carborane model 1-(3,5-{Cp(dHpe)Fe-C≡C-}2(C6H3))-10-Cp(dHpe)Fe-C≡C-closo-1-CB9H8… Click to show full abstract

Mixed-valence compounds can be used for the design of molecular quantum-dot cellular automata (QCA). Here, we investigate the QCA properties of a three-dot "Y"-shaped functionalized zwitterionic neutral closo-carborane model 1-(3,5-{Cp(dHpe)Fe-C≡C-}2(C6H3))-10-Cp(dHpe)Fe-C≡C-closo-1-CB9H8 (1) (Cp = cyclopentadienyl (η5-C5H5) and dHpe = 1,2-bis(phosphino)ethane (H2PCH2CH2PH2)) as a neutral clocked molecular half-cell. DFT results clearly demonstrate that 1 can display simultaneously the two most basic properties necessary for clocked QCA operation, i.e., bistable switching behavior and clocked control. This is possible due to the three stable states (two active and one null) of 1, corresponding to occupation of each of the three iron-ethynyl groups by the positive charge. In addition, the proximal electronic bias effects can be overcome by the zwitterionic nature of 1, which could be imposed by external counterions, rendering these effects more predictable.

Keywords: quantum dot; molecular quantum; dot cellular; cellular automata; mixed valence; dot

Journal Title: Inorganic chemistry
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.