LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

P,N-Chelated Gold(III) Complexes: Structure and Reactivity

Photo by teveir from unsplash

Gold(III) complexes are versatile catalysts offering a growing number of new synthetic transformations. Our current understanding of the mechanism of homogeneous gold(III) catalysis is, however, limited, with that of phosphorus-containing… Click to show full abstract

Gold(III) complexes are versatile catalysts offering a growing number of new synthetic transformations. Our current understanding of the mechanism of homogeneous gold(III) catalysis is, however, limited, with that of phosphorus-containing complexes being hitherto underexplored. The ease of phosphorus oxidation by gold(III) has so far hindered the use of phosphorus ligands in the context of gold(III) catalysis. We present a method for the generation of P,N-chelated gold(III) complexes that circumvents ligand oxidation and offers full counterion control, avoiding the unwanted formation of AuCl4–. On the basis of NMR spectroscopic, X-ray crystallographic, and density functional theory analyses, we assess the mechanism of formation of the active catalyst and of gold(III)-mediated styrene cyclopropanation with propargyl ester and intramolecular alkoxycyclization of 1,6-enyne. P,N-chelated gold(III) complexes are demonstrated to be straightforward to generate and be catalytically active in synthetically useful transformations of complex molecules.

Keywords: iii; gold iii; chelated gold; complexes structure; iii complexes

Journal Title: Inorganic Chemistry
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.