The mellitate ion is relevant in spent nuclear fuel processing and is utilized as a surrogate for studying the interactions of f elements with humic acids. A wealth of different… Click to show full abstract
The mellitate ion is relevant in spent nuclear fuel processing and is utilized as a surrogate for studying the interactions of f elements with humic acids. A wealth of different coordination modes gives the potential for diverse structural chemistry across the actinide series. In this study, an americium mellitate, 243Am2[(C6(COO-)6](H2O)8·2H2O (1-Am), has been synthesized and characterized using structural analysis and spectroscopy at ambient and elevated pressures. 1-Am was then compared to isomorphous neodymium (1-Nd) and samarium (1-Sm) mellitates via bond-length analysis and pressure dependence of their Laporte-forbidden f → f transitions. Results show that the pressure dependence of the f → f transitions of 1-Am is significantly greater than that observed in 1-Nd and 1-Sm, with average shifts of 21.4, 4.7, and 3.6 cm-1/GPa, respectively. This greater shift found in 1-Am shows further evidence that the 5f orbitals are more affected than the 4f orbitals when pressure is applied to isostructural compounds.
               
Click one of the above tabs to view related content.