LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Effective Removal of Clenbuterol and Ractopamine from Water with a Stable Al(III)-Based Metal-Organic Framework.

Photo by a2eorigins from unsplash

Clenbuterol (CLE) and ractopamine (RAC) are two kinds of typical β2-adrenergic agonists which pose a serious threat to the health of human beings. In this work, 10 kinds of metal-organic… Click to show full abstract

Clenbuterol (CLE) and ractopamine (RAC) are two kinds of typical β2-adrenergic agonists which pose a serious threat to the health of human beings. In this work, 10 kinds of metal-organic frameworks (MOFs) with high stability and various pore features are screened to assess adsorption performance for CLE and RAC. An Al(III)-MOF (BUT-19) with abundant ethyl groups exhibits exceptional performance in removing CLE and RAC from water. The maximum adsorption capacity for CLE and RAC are up to 294.1 and 366.3 mg/g under the optimum adsorption conditions, respectively. Meanwhile, the adsorption mechanism effects of pH, temperature, and coexisted ions are investigated systematically. It is found that the MOF pore size and weak hydrogen-bond interactions between CLE/RAC molecules and the MOF are the main causes leading to the extraordinary adsorption. This study provides a new idea for the purposeful design and synthesis of MOFs for removing environmental pollutants and sheds light on the depuration of contaminated water.

Keywords: adsorption; water; cle rac; metal organic; clenbuterol

Journal Title: Inorganic chemistry
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.