LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Enabling and Inducing Oxygen Vacancies in Cobalt Iron Layer Double Hydroxide via Selenization as Precatalysts for Electrocatalytic Hydrogen and Oxygen Evolution Reactions.

Photo from wikipedia

Production of hydrogen by water electrolysis is an environment-friendly method and comparatively greener than other methods of hydrogen production such as stream reforming carbon, hydrolysis of metal hydride, etc. However,… Click to show full abstract

Production of hydrogen by water electrolysis is an environment-friendly method and comparatively greener than other methods of hydrogen production such as stream reforming carbon, hydrolysis of metal hydride, etc. However, sluggish kinetics of the individual half-cell reactions hinders the large-scale production of hydrogen. To minimize this disadvantage, finding an appropriate, competent, and low-cost catalyst has attracted attention worldwide. Layer double hydroxide (LDH)-based materials are promising candidates for oxygen evolution reaction (OER) but not fruitful and their hydrogen evolution reaction (HER) activity is very poor, due to the lack of ionic conductivity. The inclusion of chalcogenide and generation of inherent oxygen vacancies in the lattice of LDH lead to improvement of both OER and HER activities. The presence of rich oxygen vacancies was confirmed using both the Tauc plot (1.11 eV, vacancy induction) and the photoluminescence study (peak at 426 nm, photoregeneration of oxygen). In this work, we have developed vacancy-enriched, selenized CoFe-LDH by the consequent wet-chemical and hydrothermal routes, respectively, which was used for OER and HER applications in 1 M KOH and 0.5 M H2SO4 electrolytes, respectively. For OER, the catalyst required only 251 mV overpotential to reach a 50 mA/cm2 current density with a Tafel slope value of 47 mV/dec. For HER, the catalyst demanded only 222 mV overpotential for reaching a 50 mA/cm2 current density with a Tafel slope value of 126 mV/dec. Hence, generating oxygen vacancies leads to several advantages from enhancing the exposed active sites to high probability in obtaining electrocatalytically active species and subsequent assistance in oxygen and hydrogen molecule cleavage.

Keywords: oxygen; evolution; layer double; hydrogen; oxygen vacancies; double hydroxide

Journal Title: Inorganic chemistry
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.