LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Highly Photoluminescent CsPbBr3/CsPb2Br5 NCs@TEOS Nanocomposite in Light-Emitting Diodes.

All-inorganic halide perovskite (CsPb2Br5) nanocrystals (NCs) have received widespread attention owing to their unique photoelectric properties. This work reports a novel strategy to control the phase transition from CsPbBr3 to… Click to show full abstract

All-inorganic halide perovskite (CsPb2Br5) nanocrystals (NCs) have received widespread attention owing to their unique photoelectric properties. This work reports a novel strategy to control the phase transition from CsPbBr3 to CsPb2Br5 and investigates the effects of different treatment times and treatment temperatures on perovskite NCs formation. By controlling the volume of tetraethoxysilane (TEOS) added, the formation of different phases of perovskite powder can be well controlled. In addition, a white light-emitting diode (WLED) device is designed by coupling the CsPbBr3/CsPbBr3-CsPb2Br5 NCs@TEOS nanocomposite and CaAlSiN3:Eu2+ commercial phosphor with a 460 nm InGaN blue chip, exhibiting a high luminous efficiency of 57.65 lm/W, color rendering index (CRI) of 91, and a low CCT of 5334 K. The CIE chromaticity coordinates are (0.3363, 0.3419). This work provides a new strategy for the synthesis of CsPbBr3/CsPbBr3-CsPb2Br5 NCs@TEOS nanocomposite, which can be applied to the field of WLEDs and display devices.

Keywords: teos nanocomposite; cspb2br5; cspbbr3 cspb2br5; cspbbr3; cspb2br5 ncs; ncs teos

Journal Title: Inorganic chemistry
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.