LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Redox-Induced Interconversion of Two Au8 Nanoclusters: the Mechanism and the Structure-Bond Dissociation Activity Correlations.

Photo from wikipedia

The interconversion of atomically precise nanoclusters represents an excellent platform to understand the structural correlations of nanomaterials at the atomic level. Herein, density functional theory calculations were performed to elucidate… Click to show full abstract

The interconversion of atomically precise nanoclusters represents an excellent platform to understand the structural correlations of nanomaterials at the atomic level. Herein, density functional theory calculations were performed to elucidate the mechanism of the redox-induced interconversion of [Au8(dppp)4]2+ and [Au8(dppp)4Cl2]2+ (dppp is short for 1,3-bis(diphenylphosphino)propane) nanoclusters. Reduction is the driving force for the conversion of [Au8(dppp)4Cl2]2+ to [Au8(dppp)4]2+, while the Au-Au and first Au-Cl bond dissociations occur asynchronously on the two different corner Au atoms to avoid the formation of an electron-deficient Au atom. By contrast, the reduced electron density of [Au8(dppp)4]2+ by oxidation with O2 weakens the outmost Au-Au bond therein and facilitates the coordination of the electron-rich chloride(s). The reduction- and oxidation-induced activations, respectively, of Au-Cl and Au-Au bonds and the elucidated principles on the structure-activity correlations might also be generalized to other size conversions upon redox treatment.

Keywords: au8; au8 dppp; bond; redox induced; induced interconversion

Journal Title: Inorganic chemistry
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.