LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A High-Symmetry Double-Shell Gd30Co12 Cluster Exhibiting a Large Magnetocaloric Effect.

Photo by vlisidis from unsplash

A high-nuclearity 3d-4f cluster of [Gd30CoII6CoIII6(OH)56(NO3)12(CH3COO)30(H2O)30]·(NO3)22·(en)3·(H2O)3 (1) was synthesized through the reaction of Gd(NO3)3·6H2O, Co(NO3)2·6H2O, and sodium acetate in a mixture of ethanediamine (en), ethanol, and deionized water. The cluster… Click to show full abstract

A high-nuclearity 3d-4f cluster of [Gd30CoII6CoIII6(OH)56(NO3)12(CH3COO)30(H2O)30]·(NO3)22·(en)3·(H2O)3 (1) was synthesized through the reaction of Gd(NO3)3·6H2O, Co(NO3)2·6H2O, and sodium acetate in a mixture of ethanediamine (en), ethanol, and deionized water. The cluster core in 1 features a double-shell structure with a Co12 icosahedron encapsulating a Gd30 icosidodecahedron. A magnetic study reveals that separating Co2+ ions with Gd3+ ions can effectively reduce the magnetic interaction of 3d-4f clusters. Significantly, the magnetocaloric effect (MCE) of 1 at 2 K and 7 T is up to 44.7 J kg-1 K-1, the largest MCE reported to date in the 3d-4f metal clusters.

Keywords: double shell; magnetocaloric effect; high symmetry; symmetry double

Journal Title: Inorganic chemistry
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.