Magnesium silicide (Mg2Si) is a promising eco-friendly thermoelectric material, which has been extensively studied in recent times. However, its phase behavior at high pressures and temperatures remains unclear. To this… Click to show full abstract
Magnesium silicide (Mg2Si) is a promising eco-friendly thermoelectric material, which has been extensively studied in recent times. However, its phase behavior at high pressures and temperatures remains unclear. To this end, in this study, in situ X-ray diffraction analysis was conducted at high pressures ranging from 0 to 11.3 GPa and high temperatures ranging from 296 to 1524 K, followed by quenching. The antifluorite-phase Mg2Si decomposed to Mg9Si5 and Mg at pressures above 3 GPa and temperatures above 970 K. The antifluorite-phase Mg2Si underwent a structural phase transition to yield a high-pressure room-temperature (HPRT) phase at pressures above 10.5 GPa and at room temperature. This HPRT phase also decomposed to Mg9Si5 and Mg when heated at ∼11 GPa. When 5Mg2Si decomposed to Mg9Si5 and Mg, the volume reduced by ∼6%. Mg9Si5 synthesized at high pressures and high temperatures was quenchable under ambient conditions. Thermoelectric property measurements of Mg9Si5 at temperatures ranging from 10 to 390 K revealed that it was a p-type semiconductor having a dimensionless thermoelectric figure of merit (ZT) of 3.4 × 10-4 at 283 K.
               
Click one of the above tabs to view related content.