LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Phase Relationship of Mg2Si at High Pressures and High Temperatures and Thermoelectric Properties of Mg9Si5.

Photo from wikipedia

Magnesium silicide (Mg2Si) is a promising eco-friendly thermoelectric material, which has been extensively studied in recent times. However, its phase behavior at high pressures and temperatures remains unclear. To this… Click to show full abstract

Magnesium silicide (Mg2Si) is a promising eco-friendly thermoelectric material, which has been extensively studied in recent times. However, its phase behavior at high pressures and temperatures remains unclear. To this end, in this study, in situ X-ray diffraction analysis was conducted at high pressures ranging from 0 to 11.3 GPa and high temperatures ranging from 296 to 1524 K, followed by quenching. The antifluorite-phase Mg2Si decomposed to Mg9Si5 and Mg at pressures above 3 GPa and temperatures above 970 K. The antifluorite-phase Mg2Si underwent a structural phase transition to yield a high-pressure room-temperature (HPRT) phase at pressures above 10.5 GPa and at room temperature. This HPRT phase also decomposed to Mg9Si5 and Mg when heated at ∼11 GPa. When 5Mg2Si decomposed to Mg9Si5 and Mg, the volume reduced by ∼6%. Mg9Si5 synthesized at high pressures and high temperatures was quenchable under ambient conditions. Thermoelectric property measurements of Mg9Si5 at temperatures ranging from 10 to 390 K revealed that it was a p-type semiconductor having a dimensionless thermoelectric figure of merit (ZT) of 3.4 × 10-4 at 283 K.

Keywords: decomposed mg9si5; high temperatures; phase; high pressures; pressures high; phase relationship

Journal Title: Inorganic chemistry
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.