LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

High-Pressure and High-Temperature Synthesis and In Situ High-Pressure Synchrotron X-ray Diffraction Study of HfSi2.

Photo from wikipedia

High-quality hafnium disilicide (HfSi2) has been successfully synthesized using a high-pressure and high-temperature (HPHT) method at 3 GPa and 1573 K in a DS6 × 10 MN cubic press. The… Click to show full abstract

High-quality hafnium disilicide (HfSi2) has been successfully synthesized using a high-pressure and high-temperature (HPHT) method at 3 GPa and 1573 K in a DS6 × 10 MN cubic press. The modest synthesis temperature is aided by significant decreases in both liquidus and solidus temperatures at high pressure for the Si-rich portion of the Hf-Si binary system. The in situ high-pressure X-ray diffraction study yielded a bulk modulus of B0 = 124.4 ± 0.8 GPa with a fixed B0' = 4.0 for HfSi2, which exhibits a dramatically anisotropic compressibility, with a and c axes nearly twice as incompressible as the b axis. The bulk HfSi2 as synthesized has a Vickers hardness of 6.9 ± 0.1 GPa and high thermal stability of 1163 K in air, indicating its hard and refractory ceramic properties. The core-level XPS data of Hf 4f and Si 2p have been collected on the bulk samples of HfSi2, HfSi, and Hf, as well as Si powder to examine the Hf-Si bonding in hafnium silicides. The Hf 4f7/2 binding energies are 15.0 and 14.8 eV for bulk HfSi2 and HfSi, respectively.

Keywords: situ high; pressure high; high temperature; high pressure; pressure

Journal Title: Inorganic chemistry
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.