LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Crystallographic Visualization of a Guest-Induced Solar-Driven Cycloaddition Reaction Based on a Recyclable Nonporous Coordination Polymer.

Photo by yungwuz_ from unsplash

Stimuli-responsive solids with adjustable photophysical properties are particularly attractive because they can be used as smart materials in anticounterfeiting, information storage, holographic imaging, and other fields. Herein, we report a… Click to show full abstract

Stimuli-responsive solids with adjustable photophysical properties are particularly attractive because they can be used as smart materials in anticounterfeiting, information storage, holographic imaging, and other fields. Herein, we report a unique nonporous coordination polymer, {[Ag(3,3'-dpe)](2,2'-Hbpdc)}n (1; 3,3'-dpe = 1,2-dipyridin-3-ylethene and 2,2'-H2bpdc = 2,2'-biphenyldicarboxylic acid), that can convert to an extremely photoreactive compound, 1·H2O·MeCN (MeCN = acetonitrile), through guest capture. Upon irradiation of sunlight, 1·H2O·MeCN can transform to {[Ag(3,3'-tpcb)0.5](2,2'-Hbpdc)(H2O)(MeCN)}n (2·H2O·MeCN; 3,3'-tpcb = 1,2,3,4-tetrapyridin-3-ylcyclobutane). 2·H2O·MeCN can lose its solvent molecules to form 2 and further return to 1 at high temperature. Accompanied by direct visualization based on multistep single-crystal-to-single-crystal conversions, the recyclable crystalline solid exhibits remarkable fluorescence changes, which makes it a supramolecular switch for application in multiple anticounterfeiting.

Keywords: h2o mecn; coordination polymer; mecn; nonporous coordination

Journal Title: Inorganic chemistry
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.