Stimuli-responsive solids with adjustable photophysical properties are particularly attractive because they can be used as smart materials in anticounterfeiting, information storage, holographic imaging, and other fields. Herein, we report a… Click to show full abstract
Stimuli-responsive solids with adjustable photophysical properties are particularly attractive because they can be used as smart materials in anticounterfeiting, information storage, holographic imaging, and other fields. Herein, we report a unique nonporous coordination polymer, {[Ag(3,3'-dpe)](2,2'-Hbpdc)}n (1; 3,3'-dpe = 1,2-dipyridin-3-ylethene and 2,2'-H2bpdc = 2,2'-biphenyldicarboxylic acid), that can convert to an extremely photoreactive compound, 1·H2O·MeCN (MeCN = acetonitrile), through guest capture. Upon irradiation of sunlight, 1·H2O·MeCN can transform to {[Ag(3,3'-tpcb)0.5](2,2'-Hbpdc)(H2O)(MeCN)}n (2·H2O·MeCN; 3,3'-tpcb = 1,2,3,4-tetrapyridin-3-ylcyclobutane). 2·H2O·MeCN can lose its solvent molecules to form 2 and further return to 1 at high temperature. Accompanied by direct visualization based on multistep single-crystal-to-single-crystal conversions, the recyclable crystalline solid exhibits remarkable fluorescence changes, which makes it a supramolecular switch for application in multiple anticounterfeiting.
               
Click one of the above tabs to view related content.