LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Selective Detection of Picric Acid and Pyrosulfate Ion by Nickel Complexes Offering a Hydrogen-Bonding-Based Cavity.

Photo by sharonmccutcheon from unsplash

This work describes the synthesis and characterization of three mononuclear nickel complexes supported with amide-based pincer ligands. All three complexes presented an H-bonding-based cavity due to the migration of amidic… Click to show full abstract

This work describes the synthesis and characterization of three mononuclear nickel complexes supported with amide-based pincer ligands. All three complexes presented an H-bonding-based cavity due to the migration of amidic protons to the appended heterocyclic rings that formed H-bonds with the metal-ligated solvent molecule(s). These complexes functioned as the nanomolar chemosensors for the detection of picric acid and pyrosulfate ion as inferred by the detailed absorption and emission spectral studies while further supported with FTIR, NMR, and mass spectra of the isolated products. We also illustrate a few practical detection methods for the sensing of picric acid in the solution state as the naked-eye colorimetric methods and in the solid state by employing polystyrene films.

Keywords: detection picric; acid pyrosulfate; picric acid; nickel complexes; bonding based; based cavity

Journal Title: Inorganic chemistry
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.