LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Oxidative Addition of a Hypervalent Iodine Compound to Cycloplatinated(II) Complexes for the C-O Bond Construction: Effect of Cyclometalated Ligands.

Photo by conscious_design from unsplash

The complex [PtMe(Obpy)(OAc)2(H2O)], 2a, Obpy = 2,2'-bipyridine N-oxide, is prepared through the reaction of [PtMe(Obpy)(SMe2)], 1a, by 1 equiv of PhI(OAc)2 via an oxidative addition (OA) reaction. Pt(IV) complex 2a… Click to show full abstract

The complex [PtMe(Obpy)(OAc)2(H2O)], 2a, Obpy = 2,2'-bipyridine N-oxide, is prepared through the reaction of [PtMe(Obpy)(SMe2)], 1a, by 1 equiv of PhI(OAc)2 via an oxidative addition (OA) reaction. Pt(IV) complex 2a attends the process of C-O bond reductive elimination (RE) reaction to form methyl acetate and corresponding Pt(II) complex [Pt(Obpy)(OAc)(H2O)], 3a. The kinetic of OA and RE reactions are investigated by means of different spectroscopies. The obtained results show that the reaction rates of OA step of 1a are faster than its analogous complex [PtMe(ppy)(SMe2)], 1b, ppy = 2-phenylpyridine. The density functional theory (DFT) calculations signify that the OA reaction initiated by a nucleophilic attack of the platinum(II) central atom of 1b on the iodine(III) atom while it had commenced by a nucleophilic substitution reaction of coordinated SMe2 in 1a with a carbonyl oxygen atom of PhI(OAc)2. Our calculation revealed that the key step for 1a is an acetate transfer from the I(III) to Pt(II) through a formation of square pyramidal iodonium complex. This can be attributed to the more electron-withdrawing character of Obpy ligand than to ppy which reduces the nucleophilicity of Pt atom in 1a. Furthermore, 2a with electron-withdrawing Obpy ligand prone to C-O bond formation faster than complex [PtMe(ppy)(OAc)2(H2O)], 2b, with an electron-rich ppy ligand which conforms to the anticipation that REs occur faster on electron-poor metal centers.

Keywords: reaction; oxidative addition; bond; oac; ptme

Journal Title: Inorganic chemistry
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.