LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Synthesis, Structure, and Light Absorption Behaviors of Prismatic Titanium-Oxo Clusters Containing Lacunary Lindqvist-like Species.

Photo by elizabethlies from unsplash

Exploring new structural types of polyoxotitanium clusters (PTCs), especially those containing classical polyoxometalates structures, has always been the focus of research in the field of metal-oxo clusters. In this work,… Click to show full abstract

Exploring new structural types of polyoxotitanium clusters (PTCs), especially those containing classical polyoxometalates structures, has always been the focus of research in the field of metal-oxo clusters. In this work, we present the synthesis and characterization of three prismatic PTCs: namely, Ti8(μ2-O)3(μ4-O)2(OnPr)6(HOnPr)2(L1)8 (PTC-237; H2L1 = 3,5-di-tert-butylcatechol), Ti12(μ2-O)6(μ3-O)8(OnPr)6(L2)12(L3)2 (PTC-238; HL2 = 1-adamantanecarboxylic acid, HL3 = 2-picolinic acid), and [Ti18(μ2-O)4(μ3-O)16(μ5-O)2(OiPr)18(L3)8](L3)2 (PTC-239). Single-crystal X-ray diffraction analyses indicate that the construction of these prismatic PTCs is based on a stepwise interlayer assembly of {Ti3} and {Ti4} substructures. The diameters of their core skeletons are in the range between 0.9 and 1.3 nm. In particular, lacunary Linqvist-like {Ti4} and {Ti5} building units are found to exist in the structures of PTC-237 and PTC-239. According to the solid-state UV-vis diffuse reflectance measurements, the absorption band of 3,5-di-tert-butylcatecholate-functionalized PTC-237 shifts toward the visible-light region, giving a smaller optical band gap of 1.56 eV in comparison to PTC-238 (3.36 eV) and PTC-239 (3.25 eV).

Keywords: ptc 239; ptc; ptc 237; synthesis structure; oxo clusters; absorption

Journal Title: Inorganic chemistry
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.