LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Inverted Ligand Field in a Pentanuclear Bow Tie Au/Fe Carbonyl Cluster.

Photo by atarwacki from unsplash

Gold chemistry has experienced in the last decades exponential attention for a wide spectrum of chemical applications, but the +3 oxidation state, traditionally assigned to gold, remains somewhat questionable. Herein,… Click to show full abstract

Gold chemistry has experienced in the last decades exponential attention for a wide spectrum of chemical applications, but the +3 oxidation state, traditionally assigned to gold, remains somewhat questionable. Herein, we present a detailed analysis of the electronic structure of the pentanuclear bow tie Au/Fe carbonyl cluster [Au{η2-Fe2(CO)8}2]- together with its two one-electron reversible reductions. A new interpretation of the bonding pattern is provided with the help of inverted ligand field theory. The classical view of a central gold(III) interacting with two [Fe2(CO)8]2- units is replaced by Au(I), with a d10 gold configuration, with two interacting [Fe2(CO)8]- fragments. A d10 configuration for the gold center in the compound [Au{η2-Fe2(CO)8}2]- is confirmed by the LUMO orbital composition, which is mainly localized on the iron carbonyl fragments rather than on a d gold orbital, as expected for a d8 configuration. Upon one-electron stepwise reduction, the spectroelectrochemical measurements show a progressive red shift in the carbonyl stretching, in agreement with the increased population of the LUMO centered on the iron units. Such a trend is also confirmed by the X-ray structure of the direduced compound [Au{η1-Fe2(CO)8}{η2-Fe2(CO)6(μ-CO)2}]3-, featuring the cleavage of one Au-Fe bond.

Keywords: chemistry; carbonyl; pentanuclear bow; gold; bow tie; tie carbonyl

Journal Title: Inorganic chemistry
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.