LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Synthesis of a Lanthanide Metal-Organic Framework and Its Fluorescent Detection for Phosphate Group-Based Molecules Such as Adenosine Triphosphate.

Photo by itfeelslikefilm from unsplash

Adenosine triphosphate (ATP) is an important kind of metabolized biological molecule that is formed in organisms, especially in mitochondria, is used universally as energy, and is one of the most… Click to show full abstract

Adenosine triphosphate (ATP) is an important kind of metabolized biological molecule that is formed in organisms, especially in mitochondria, is used universally as energy, and is one of the most significant multifunctional biological molecules. Metal-organic frameworks (MOFs) have been widely used in many applications such as gas storage and separation, drug delivery, heterogeneous catalysis, chemical sensors, etc. Remarkably, lanthanide MOFs (Ln-MOFs), which display large pores, multiple dimensions, and unique lanthanide luminescence properties, are widely used as chemical sensors. A novel three-dimensional probe, Eu2(sbdc)3(H2O)3 (Eu-sbdc), was successfully self-assembled with Eu(NO3)3·6H2O and 5,5-dioxo-5H-dibenzo[b,d]thiophene-3,7-dicarboxylic acid (H2sbdc). The Ln-MOF Eu-sbdc can quickly and effectively optically detect ATP via a luminescent quenching mechanism. The Ksv value of Eu-sbdc is 1.02 × 104 M-1, and the lower detection limit of Eu-sbdc for ATP is 20 μM, which is more sensitive to ATP. Its mechanism of monitoring ATP might be a dynamic or static quenching process. Eu-sbdc could effectively and quickly recognize ATP with high sensitivity.

Keywords: synthesis lanthanide; metal organic; detection; adenosine triphosphate; sbdc; atp

Journal Title: Inorganic chemistry
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.