LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Crystal Packing-Driven Selective Hg(II) Ion Sensing Using Thiazolothiazole-Based Water-Stable Zinc Metal-Organic Framework.

Photo from wikipedia

A soft acid-soft base interaction is highly predictable. However, we demonstrate how the crystal packing of the newly synthesized zinc framework [Zn2(5-AIA)2(DPTTZ)]·DMF (where 5-AIA = 5-aminoisophthalic acid, DPTTZ = N,N'-di(4-pyridyl)thiazolo-[5,4-d]thiazole,… Click to show full abstract

A soft acid-soft base interaction is highly predictable. However, we demonstrate how the crystal packing of the newly synthesized zinc framework [Zn2(5-AIA)2(DPTTZ)]·DMF (where 5-AIA = 5-aminoisophthalic acid, DPTTZ = N,N'-di(4-pyridyl)thiazolo-[5,4-d]thiazole, DMF = N,N'-dimethylformamide) directs an unexpected interaction between the soft acid Hg(II) and the hard base oxygen instead of having a soft center like nitrogen and sulfur in the system attributed to a strong solvent interaction and a favorable ionic radius of Hg(II) ion for oxygen chelation. This engenders selective Hg(II) ion sensing through a "turn-off" emission quenching in water (limit of detection = (2.174 ± 0.06) × 10-9 M) along with natural water resources and in a broad pH range. A quantum-chemical calculation elucidates the turn-off quenching mechanism and favorable Hg(II) interaction with encompassed oxygen atoms inside the framework.

Keywords: framework; ion sensing; crystal packing; water; ion; selective ion

Journal Title: Inorganic chemistry
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.