LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Lead-Free Aurivillius Phase Bi2LaNb1.5Mn0.5O9: Structure, Ferroelectric, Magnetic, and Magnetodielectric Effects.

Photo by mybbor from unsplash

Aurivillius phase Bi2LaNb1.5Mn0.5O9, derived from ferroelectric PbBi2Nb2O9 by simultaneous substitution of the A-site and B-site cations, was synthesized using a molten-salt method. Here, we discuss the structure-property relationships in detail.… Click to show full abstract

Aurivillius phase Bi2LaNb1.5Mn0.5O9, derived from ferroelectric PbBi2Nb2O9 by simultaneous substitution of the A-site and B-site cations, was synthesized using a molten-salt method. Here, we discuss the structure-property relationships in detail. X-ray and neutron diffraction show that Bi2LaNb1.5Mn0.5O9 adopts an A21am orthorhombic crystal structure. Rietveld refinement analysis, supported by Raman spectroscopy, indicates that the Bi3+ ions occupy the bismuth oxide blocks, La3+ ions occupy the perovskite A-site, and Nb5+/Mn3+ ions occupy the perovskite B-site. Ferroelectric ordering takes place at 535 K, which coexists with local ferromagnetic order below 65 K. The cation disorder on the B-site results in relaxor-ferroelectric behavior, and the short-range ferromagnetic order can be attributed to Mn3+/Mn4+ double-exchange. Magnetodielectric coupling measured at 5 K and 100 kHz in a field of 5 T suggests the existence of intrinsic spin-lattice coupling with a magnetodielectric coefficient of 0.20%. These findings will provide significant impetus for further research into potential devices based on the magnetodielectric effect in Aurivillius materials.

Keywords: 5mn0 5o9; structure; aurivillius phase; bi2lanb1 5mn0; phase bi2lanb1; site

Journal Title: Inorganic chemistry
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.