LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

An Approach to an Ideal Molecule-Based Mixed Conductor with Comparable Proton and Electron Conductivity.

Photo from wikipedia

We synthesized a molecule-based proton-electron mixed conductor (PEMC), a Pt(III) dithiolate complex with 1,4-naphthoquinone skeletons. The π-planar Pt complex involves a π-stacking column, which is connected by one-dimensional hydrogen bonding… Click to show full abstract

We synthesized a molecule-based proton-electron mixed conductor (PEMC), a Pt(III) dithiolate complex with 1,4-naphthoquinone skeletons. The π-planar Pt complex involves a π-stacking column, which is connected by one-dimensional hydrogen bonding chains composed of water molecules. The room-temperature (RT) proton conductivity is 8.0 × 10-5 S cm-1 under ambient conditions, which is >2 orders of magnitude higher than that of the isomorphous Ni complex (7.2 × 10-7 S cm-1). The smaller activation energy (0.23 eV) compared to that of the Ni complex (0.42 eV) possibly originates from the less dense water, which promotes the reorientational dynamics, in the Pt complex with an expanded lattice, namely, negative chemical pressure upon substitution of Ni with the larger Pt. In addition, the Pt complex shows a relatively high RT electronic conductivity of 1.0 × 10-3 S cm-1 caused by the π-columns, approaching an ideal PEMC with comparable proton and electron conduction.

Keywords: conductivity; molecule based; mixed conductor; proton electron; proton

Journal Title: Inorganic chemistry
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.