LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Polyoxometalate-Incorporated Metal-Organic Network as a Heterogeneous Catalyst for Selective Oxidation of Aryl Alkenes.

Photo by unstable_affliction from unsplash

Selective oxidation of aryl alkenes is important for chemical synthesis reactions, in which the key lies in the rational design of efficient catalysts. Herein, four polyoxometalate (POM)-incorporated metal-organic networks, with… Click to show full abstract

Selective oxidation of aryl alkenes is important for chemical synthesis reactions, in which the key lies in the rational design of efficient catalysts. Herein, four polyoxometalate (POM)-incorporated metal-organic networks, with the formulas of [Co(ttb)(H2O)3]2[SiMo12O40]·2H2O (1), [Co(ttb)(H2O)2]2[SiW12O40]·8H2O (2), [Zn(Httb)(H2ttb)][BW12O40]·9H2O (3) and {[Zn(H2O)3(ttb)]4[Zn3(H2O)6]}[H3SiW10.5Zn1.5O40]2·24H2O (4) (ttb = 1,3,5-tri(1,2,4-triazol-1-ylmethyl)-2,4,6-trimethylbenzene), were hydrothermally synthesized and structurally characterized. Structural analysis showed that compound 1 consists of a POM-encapsulated three-dimensional (3-D) supramolecular framework; compound 2 is composed of a POM-supported 3-D coordination network; and compounds 3-4 show POM-incorporated 3-D supramolecular networks. Using selective catalytic oxidation of styrene as the model reaction, compounds 1-4 as heterogeneous catalysts display excellent performance with the double advantages of high styrene conversion and benzaldehyde selectivity owing to the synergistic effect among POM anions and transition metal (TM) centers. Among them, compound 1 exhibits the highest performance with ca. 96% styrene conversion and ca. 99% benzaldehyde selectivity in 3 h. In addition, compound 1 also displays excellent substrate compatibility, good reusability, and structural stability. Thus, a plausible reaction pathway for the selective oxidation of styrene is proposed. This study on the structure-function relationship paves a way for the rational design of POM-based heterogeneous catalysts for important catalysis applications.

Keywords: oxidation; selective oxidation; aryl alkenes; incorporated metal; oxidation aryl

Journal Title: Inorganic chemistry
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.