Controlling the synthesis of chiral metal clusters in the aspects of nuclearity number, metal-metal interaction, and spatial arrangement of metal atoms is crucial for establishing the correlation of detailed structural… Click to show full abstract
Controlling the synthesis of chiral metal clusters in the aspects of nuclearity number, metal-metal interaction, and spatial arrangement of metal atoms is crucial for establishing the correlation of detailed structural factors with chiroptical activity. Herein, a series of enantiopure gold complexes with nuclearity numbers ranging from 2 to 5 were constructed and structurally characterized. On the basis of the annulation reaction between two aurated μ2-imido nucleophilic units with various aldehydes, we finely adjusted the metal-metal interaction and torsion angles of a characteristic tetranuclear metal cluster by introducing different substituents into the resulting imidazolidine dianionic chiral skeleton. Further structural investigations, contrast experiments, and time-dependent density functional theory calculations confirmed that the chiroptical response of the acquired asymmetric metal clusters was mainly affected by the geometrically twisted arrangement of metal atoms. Finally, the tetranuclear gold cluster compound with the shortest intermetallic interaction and the largest torsion angle of a Au4 core showed the highest absorption anisotropy factor up to 2.2 × 10-3. In addition, the correlation of structural factors with the stability of chiral gold clusters was thoroughly evaluated by monitoring the CD, UV-vis, and NMR spectra at elevated temperatures. Insight into the relationship between the structural factors with the chiroptical property and stability of chiral gold clusters in this work will help us to design and achieve more stable chiral metal clusters and stimulate their practical applications in chiroptical functional materials.
               
Click one of the above tabs to view related content.