LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Synthesis and Reduction of Heteroleptic Bis(cyclopentadienyl) Uranium(III) Complexes.

Photo from wikipedia

Heteroleptic U(III) complexes supported by bis(cyclopentadienyl) frameworks have been synthesized to examine their suitability as precursors to U(II) complexes. The newly synthesized (C5Me5)2U(OC6H2tBu2-2,6-Me-4), (C5Me5)2U(OC6H2Ad2-2,6-tBu-4) (Ad = 1-adamantyl), (C5Me5)2U(C5H5), and (C5Me5)2U(C5Me4H)… Click to show full abstract

Heteroleptic U(III) complexes supported by bis(cyclopentadienyl) frameworks have been synthesized to examine their suitability as precursors to U(II) complexes. The newly synthesized (C5Me5)2U(OC6H2tBu2-2,6-Me-4), (C5Me5)2U(OC6H2Ad2-2,6-tBu-4) (Ad = 1-adamantyl), (C5Me5)2U(C5H5), and (C5Me5)2U(C5Me4H) are compared with (C5Me5)2U[N(SiMe3)2], (C5Me5)2U[CH(SiMe3)2], and (C5Me5)U[N(SiMe3)2]2. An improved synthesis of (C5Me5)2U(μ-Ph)2BPh2 was developed, which was used to synthesize (C5Me5)2U(C5Me4H). Since the X-ray crystal structure of (C5Me5)2U(OC6H2tBu2-2,6-Me-4) contained two very different molecules in the asymmetric unit with 115.7(5)° and 166.0(5)° U-O-Cipso angles, the (C5Me4H)2U(OC6H2tBu2-2,6-Me-4) and (C5Me5)2Ce(OC6H2tBu2-2,6-Me-4) analogues were synthesized and characterized by X-ray diffraction for comparison. Electrochemical studies in THF with a 100 mM [nBu4N][BPh4] supporting electrolyte showed U(IV)/U(III) and U(III)/U(II) redox couples for all the heteroleptic complexes except (C5Me5)2U(C5H5). Chemical reduction of all heteroleptic compounds formed dark blue solutions characteristic of U(II) when reacted with KC8 at -78 °C, but none formed isolable U(II) complexes. The targeted U(II) complexes, [(C5Me5)2U(OC6H2tBu2-2,6-Me-4)]1-, {(C5Me5)2U[CH(SiMe3)2]}1-, [(C5Me5)2U(C5H5)]1-, and [(C5Me5)2U(C5Me4H)]1-, were analyzed by density functional theory, and a 5f36d1 electron configuration was found to be the ground state in each case.

Keywords: c5me5; bis cyclopentadienyl; c5me5 sime3; iii complexes; iii; reduction heteroleptic

Journal Title: Inorganic chemistry
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.