LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Morphology-Dependent Electrocatalytic Performance of a Two-Dimensional Nickel-Iron MOF for Oxygen Evolution Reaction.

Photo from wikipedia

Developing highly efficient, low-cost, and durable oxygen evolution reaction (OER) electrocatalysts is extraordinarily desirable for achieving clean and sustainable hydrogen energy. Metal-organic frameworks (MOFs) are emerging as attractive candidates for… Click to show full abstract

Developing highly efficient, low-cost, and durable oxygen evolution reaction (OER) electrocatalysts is extraordinarily desirable for achieving clean and sustainable hydrogen energy. Metal-organic frameworks (MOFs) are emerging as attractive candidates for OER electrocatalysts. Herein, a two-dimensional Fe-Ni MOF of Fe(py)2Ni(CN)4 (py = pyridine) is synthesized controllably to generate various nanostructures, including nanoboxes, nanocubes, nanoplates, and nanosheets. Since different morphologies expose different active crystal planes and generate disparate intrinsic active sites, these nanostructures exhibit obviously different electrocatalytic activities. Particularly, the nanoboxes with a hollow structure display superior electrocatalytic activity and stability for OER due to greater active surface area and higher intrinsic activity of the exposed crystal planes, delivering a low overpotential of 285 mV at 10 mA cm-2 and a small Tafel value of 50.9 mV dec-1 in a 1.0 M KOH solution. The morphology-dependent electrocatalytic properties demonstrated in this work provide an efficient strategy to optimize MOF precatalysts for electrochemical energy storage and conversion.

Keywords: two dimensional; oxygen evolution; morphology dependent; dependent electrocatalytic; evolution reaction

Journal Title: Inorganic chemistry
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.