LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Toward Environmentally Benign Electrophilic Chlorinations: From Chloroperoxidase to Bioinspired Isoporphyrins

Photo by tbyphoto from unsplash

Recent desires to develop environmentally benign procedures for electrophilic chlorinations have encouraged researchers to take inspiration from nature. In particular, the enzyme chloroperoxidase (CPO), which is capable of electrophilic chlorinations… Click to show full abstract

Recent desires to develop environmentally benign procedures for electrophilic chlorinations have encouraged researchers to take inspiration from nature. In particular, the enzyme chloroperoxidase (CPO), which is capable of electrophilic chlorinations through the umpolung of chloride by oxidation with hydrogen peroxide (H2O2), has received lots of attention. CPO itself is unsuitable for industrial use because of its tendency to decompose in the presence of excess H2O2. Biomimetic complexes (CPO active-site mimics) were then developed and have been shown to successfully catalyze electrophilic chlorinations but are too synthetically demanding to be economically viable. Reported efforts at generating the putative active chlorinating agent of CPO (an iron hypochlorite species) via the umpolung of chloride and using simple meso-substituted iron porphyrins were unsuccessful. Instead, a meso-chloroisoporphyrin intermediate was formed, which was shown to be equally capable of performing electrophilic chlorinations. The current developments toward a potential method involving this novel intermediate for environmentally benign electrophilic chlorinations are discussed. Although this novel pathway no longer follows the mechanism of CPO, it was developed from efforts to replicate its function, showing the power that drawing inspiration from nature can have.

Keywords: chloroperoxidase; electrophilic chlorinations; toward environmentally; benign electrophilic; cpo; environmentally benign

Journal Title: Inorganic Chemistry
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.