LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Cyclic Carbonate Synthesis from Epoxides and CO2 Catalyzed by Aluminum-Salen Complexes Bearing a nido-C2B9 Carborane Ligand.

Photo by jothhunt from unsplash

The active and well-designed Schiff base ligands are considered "privileged ligands". The so-called salen ligands, i.e., the tetradentate [O, N, N, O] bis-Schiff base ligands, have also found broad applications… Click to show full abstract

The active and well-designed Schiff base ligands are considered "privileged ligands". The so-called salen ligands, i.e., the tetradentate [O, N, N, O] bis-Schiff base ligands, have also found broad applications in many homogeneous catalytic reactions. Modification of the salen ligands has concentrated on altering the substituents in the phenolate rings and variations in the diamine backbones. Herein, o-carborane-supported salen ligands (2) were designed and prepared. A series of aluminum-salen complexes (3·(sol)2), which were supported by the nido-C2B9 carborane anions, were synthesized. These Al(III) complexes showed high activities (TOF up to 1500 h-1) in catalyzing the cycloaddition of epoxides and CO2 at atmospheric pressure and near room temperature. Complexes 3·(sol)2 are one of the rare examples of Al-based catalysts capable of promoting cycloaddition at 1 bar pressure of CO2. Density functional theory (DFT) studies combined with the catalytic results reveal that the catalytic cycles occur on two axial sites of the Al(III) center.

Keywords: c2b9 carborane; nido c2b9; aluminum salen; epoxides co2; salen complexes

Journal Title: Inorganic chemistry
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.