LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

BioMOF-Mn: An Antimicrobial Agent and an Efficient Nanocatalyst for Domino One-Pot Preparation of Xanthene Derivatives.

Photo by brookecagle from unsplash

In this paper, a new Mn-based metal-organic framework [UoB-6] was obtained via a one-step ultrasonic irradiation method with the ligand (H2bdda: 4,4'-(1,4-phenylenebis(azaneylylidene))bis(methaneylylidene))dibenzoic acid. The structural integrity of the synthesized BioMOF-Mn… Click to show full abstract

In this paper, a new Mn-based metal-organic framework [UoB-6] was obtained via a one-step ultrasonic irradiation method with the ligand (H2bdda: 4,4'-(1,4-phenylenebis(azaneylylidene))bis(methaneylylidene))dibenzoic acid. The structural integrity of the synthesized BioMOF-Mn was corroborated by FT-IR, EDX, ICP, XRD, TEM, DLS, FESEM, and BET-BJH analyses. The aerobic oxidative domino reaction of benzyl alcohols or aldehydes with dimedone derivatives was performed in the presence of the UoB-6 catalyst to produce xanthene derivatives in good yields. Hot filtration and Hg poisoning tests proved the heterogeneous nature of the catalyst. Novel synthesized xanthene-based bis-aldehydes were introduced as potent HDAC1 inhibitors according to molecular docking calculations. Finally, the inhibitory activities of Mn-MOF nanoparticles were evaluated on Escherichia coli and Candida albicans. The MIC, MBC, and MFC values were determined from 2048 to 4096 μg·mL-1 according to antimicrobial susceptibility testing methods. The inhibitory effects of antimicrobial agents can be exacerbated when loaded on BioMOFs.

Keywords: agent efficient; domino; antimicrobial agent; biomof antimicrobial; xanthene derivatives

Journal Title: Inorganic chemistry
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.