We present herein a combined structural and computational analysis of the anion binding capabilities of perfluorinated polymercuramacrocycles. The Cambridge Structural Database (CSD) has been explored to find the coordination preference… Click to show full abstract
We present herein a combined structural and computational analysis of the anion binding capabilities of perfluorinated polymercuramacrocycles. The Cambridge Structural Database (CSD) has been explored to find the coordination preference of these cyclic systems toward specific Lewis bases, both anionic and neutral. Interaction energies with different electron-rich species have been computed and further decomposed into chemically meaningful terms by means of energy decomposition analysis. Furthermore, we have investigated, by means of the natural resonance theory and natural bond orbital analyses how the orbitals involved in the interaction are key in determining the final geometry of the adduct. Finally, a generalization of the findings in terms of the molecular orbital theory has allowed us to understand the formation of the pseudo-octahedral second coordination sphere in linear Hg(II) complexes.
               
Click one of the above tabs to view related content.