The electronic and nonlinear optical (NLO) properties of BN-substituted graphynes and the corresponding alkali-doped hybrid systems have been determined using density functional theory. When the carbon atoms in the graphyne… Click to show full abstract
The electronic and nonlinear optical (NLO) properties of BN-substituted graphynes and the corresponding alkali-doped hybrid systems have been determined using density functional theory. When the carbon atoms in the graphyne are replaced by BN pairs, the highest occupied molecular orbital-lowest unoccupied molecular orbital (HOMO-LUMO) gap (Egap) increases to some extent, and the static first hyperpolarizabilities (β0) of the novel systems hardly increase. However, when an alkali atom is introduced on the surface of BN-substituted graphyne, the doping effect can effectively modulate the electronic and NLO properties. Doping the alkali atom can significantly narrow the wide Egap of BN-substituted graphynes in the range of 1.03-2.03 eV. Furthermore, the doping effect brings considerable β0 values to these alkali-doped systems, which are 52-3609 au for Li-doped systems and 3258-211 053 au for Na/K-doped ones. The result reveals that the β0 values of alkali-doped complexes are influenced by the atomic number of alkali metals and the proportion of BN pairs. The nature of the excellent NLO responses of alkali-doped complexes can be understood by the low excitation energy of the crucial excited state and the analysis of the first hyperpolarizability density. Besides, these alkali-doped complexes have a deep-ultraviolet working region. Therefore, the combined effect of alkali metal doping and BN substitution can be an excellent strategy to design novel high-performance NLO materials based on graphyne.
               
Click one of the above tabs to view related content.