LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Weakening the N-H Bonds of NH3 Ligands: Triple Hydrogen-Atom Abstraction to Form a Chromium(V) Nitride.

Photo from wikipedia

Weakening and cleaving N-H bonds is crucial for improving molecular ammonia (NH3) oxidation catalysts. We report the synthesis and H-atom-abstraction reaction of bis(ammonia)chromium porphyrin complexes Cr(TPP)(NH3)2 and Cr(TMP)(NH3)2 (TPP =… Click to show full abstract

Weakening and cleaving N-H bonds is crucial for improving molecular ammonia (NH3) oxidation catalysts. We report the synthesis and H-atom-abstraction reaction of bis(ammonia)chromium porphyrin complexes Cr(TPP)(NH3)2 and Cr(TMP)(NH3)2 (TPP = 5,10,15,20-tetraphenyl-meso-porphyrin and TMP = 5,10,15,20-tetramesityl-meso-porphyrin) using bulky aryloxyl radicals. The triple H-atom-abstraction reaction results in the formation of CrV(por)(≡N), with the nitride derived from NH3, as indicated by UV-vis and IR and single-crystal structural determination of Cr(TPP)(≡N). Subsequent oxidation of this chromium(V) nitrido complex results in the formation of CrIII(por), with scission of the Cr≡N bond. Computational analysis illustrates the progression from CrII to CrV and evaluates the energetics of abstracting H atoms from CrII-NH3 to generate CrV≡N. The formation and isolation of CrV(por)(≡N) illustrates the stability of these species and the need to chemically activate the nitride ligand for atom transfer or N-N coupling reactivity.

Keywords: atom abstraction; weakening bonds; bonds nh3; nh3 ligands; abstraction; chromium

Journal Title: Inorganic chemistry
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.