We precisely synthesized two-dimensional (2D) PtPdCu nanostructures with the morphology varying from porous circular nanodisks (CNDs) and triangular nanoplates (TNPs) to triangular nanoboomerangs (TNBs) by tuning the molar ratios of… Click to show full abstract
We precisely synthesized two-dimensional (2D) PtPdCu nanostructures with the morphology varying from porous circular nanodisks (CNDs) and triangular nanoplates (TNPs) to triangular nanoboomerangs (TNBs) by tuning the molar ratios of metal precursors. The PtPdCu trimetallic nanoalloys exhibit superior electrocatalytic performances to alcohol oxidation reactions due to their unique structural features and the synergistic effect. Impressively, PtPdCu TNBs exhibit a high mass activity of 3.42 mgPt+Pd-1 and 1.06 A·mgPt-1 for ethanol and methanol oxidation compared to PtPd, PtCu, and pure Pt, which is 3.93 and 4.07 times that of commercial Pt/C catalysts, respectively. Moreover, 2D PtPdCu TNPs and PtPdCu CNDs also show a highly improved electrocatalytic activity. Furthermore, as all-in-one electrocatalysts, PtPdCu nanoalloys display excellent electrocatalytic activity and stability toward the oxidation of other alcohol molecules, such as isopropyl alcohol, glycerol, and ethylene glycol. The enhanced mechanism was well proposed to be the abundant active sites and upshifted d-band center based on density functional theory calculations.
               
Click one of the above tabs to view related content.