Iron-hydride and iron-boryl complexes supported by a pyrrole-based pincer ligand, tBuPNP (PNP = anion of 2,5-bis(di-tert-butylphosphinomethyl)pyrrole), were employed for a detailed mechanistic study on the hydroboration of internal alkynes. Several… Click to show full abstract
Iron-hydride and iron-boryl complexes supported by a pyrrole-based pincer ligand, tBuPNP (PNP = anion of 2,5-bis(di-tert-butylphosphinomethyl)pyrrole), were employed for a detailed mechanistic study on the hydroboration of internal alkynes. Several novel complexes were isolated and fully characterized, including iron-vinyl and iron-boryl species, which represent likely intermediates in the catalytic hydroboration pathway. In addition, the products of alkyne insertion into the Fe-B bond have been isolated and structurally characterized. Mechanistic studies of the hydroboration reaction favor a pathway involving an active iron-hydride species, [FeH(tBuPNP)], which readily inserts alkyne and undergoes subsequent reaction with hydroborane to generate product. The iron-boryl species, [Fe(BR2)(tBuPNP)] (R2 = pin or cat), was found to be chemically competent, although its use in catalysis entailed an induction period whereby the iron-hydride species was generated. Stoichiometric reactions and kinetic experiments were performed to paint a fuller picture of the mechanism of alkyne hydroboration, including pathways for catalyst deactivation and the influence of substrate bulk on catalytic efficacy.
               
Click one of the above tabs to view related content.