LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Structural Complexity and Tuned Thermoelectric Properties of a Polymorph of the Zintl Phase Ca2CdSb2 with a Non-centrosymmetric Monoclinic Structure.

Photo from wikipedia

The Zintl phase Ca2CdSb2 was found to be dimorphic. Besides the orthorhombic Ca2CdSb2 (-o), here we report on the synthesis, the structural characterization, and the thermoelectric transport properties of its… Click to show full abstract

The Zintl phase Ca2CdSb2 was found to be dimorphic. Besides the orthorhombic Ca2CdSb2 (-o), here we report on the synthesis, the structural characterization, and the thermoelectric transport properties of its monoclinic form, Ca2CdSb2 (-m), and its Lu-doped variant Ca2-xLuxCdSb2 (x ≈ 0.02). The monoclinic structure exhibits complex structural characteristics and constitutes a new structure type with the non-centrosymmetric space group Cm (Z = 30). The electrical resistivity ρ(T) measured on single crystals of both phases portrays a transition from a semiconductor to a degenerate p-type semiconductor upon doping with Lu and with an attendant change in the Hall carrier concentration nH from 7.15 × 1018 to 2.30 × 1019 cm-3 at 300 K. The Seebeck coefficient S(T) of both phases are comparable and indicate a hole-dominated carrier transport mechanism with magnitudes of 133 and 116 μV/K at 600 K for Ca2CdSb2 (-m) and Ca2-xLuxCdSb2, respectively. The convoluted atomic bonding with an attendant large unit cell volume of ∼4365 Å3 drives a putative low thermal conductivity in these materials resulting in a power factor PF of 1.63 μW/cm K2 and an estimated thermoelectric figure of merit zT of ∼0.5 for Ca2-xLuxCdSb2 at 600 K. Differential scanning calorimetry results reveal the stability of these phases up to about 960 K, making them candidates for moderate temperature thermoelectric materials.

Keywords: monoclinic structure; structure; non centrosymmetric; ca2cdsb2; zintl phase; phase ca2cdsb2

Journal Title: Inorganic chemistry
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.